Posts Tagged ‘B-Square adjustable scope mount’

Scope dope — I hope! Part 4

by Tom Gaylord, a.k.a. B.B. Pelletier

Part 1
Part 2
Part 3

This is an ongoing series about scope questions and issues. Blog reader David Enoch asked for it originally, but many other readers have jumped in since it began. Today, I’ll talk about adjustable scope mounts.

First things first
Why do we need adjustable scope mounts? Aren’t the scopes, themselves, supposed to adjust? Yes, they are, but 2 things quickly become a problem. First, the scopes don’t adjust as far as we need them to; and second, when a scope adjusts toward its upper and right limits, it loses its precision. I will address the second problem because it’s really the principal one.

When we look at a scope, we see that it has a range of adjustability and assume that it’ll work as it should throughout this range. But that’s not the case. Inside each modern scope there is a smaller tube called the erector tube. The erector tube often contains the reticle; and as the tube moves up, down, left and right, so does the reticle. So, moving the erector tube is what moves the reticle.

There is a spring or springs that press against the erector tube, making it press against the adjustment knobs, in turn. That spring has a range of movement it goes through as the tube moves. When the tube is up high or far to the right, then a spring or springs that press it against the adjustment knob or knobs are relaxed and can allow the erector tube to move when the gun vibrates, such as with a shot. This is one of the chief causes for “scope shift.” You fire the gun, and the erector tube moves slightly, taking the reticle along with it, of course. On the next shot, the scope will be aiming at a slightly different place. It’ll appear that your scope is wildly throwing the shots around.

scope knob adjustment range
This elevation knob is adjusted up to its maximum limit. I recommend not adjusting it higher than the number 3 line on a scope like this to avoid scope shift.

I tell folks that a good rule of thumb is to not adjust their scopes above the 3/4 mark on the elevation knob or past the 3/4 mark on the right windage adjustment. Some scopes can adjust farther than this without a problem; but the closer you stay toward the middle of the range, the better. If your scope doesn’t have knobs like these, you may have to count the actual clicks of adjustment to know where you are.

Is adjusting the scope in the opposite direction (i.e., down or to the left) a problem? No, it isn’t. You can adjust all the way until the adjustments run out in the down and left directions. It doesn’t hurt the scope, nor does it affect accuracy.

So, the scope that you thought had a huge adjustment range turns out not to have as much as you believed. Yet, your airgun (or firearm) needs more adjustment than you have. How do you compensate for the adjustment you no longer have but may need? With a scope mount that adjusts, of course.

Adjustable scope mounts
The purpose of an adjustable scope mount is to align the axis of the scope in a direction different than the scope base on the gun dictates. If all scope bases were aligned with the axis of the barrel, there wouldn’t be a problem, but they aren’t. Adjustable scope mounts can compensate for this, leaving the scope’s internal adjustments to serve the ballistic requirements of the gun in question.

Up and down, left and right
A barrel can point off from a gun’s scope base in any direction, but the most common direction is down. The barrel “looks” down, in relation to where the scope tries to look. The other 3 directions are also possible, with left being the second most common. After that, the other 2 directions happen pretty infrequently.

So, if you’re going to need extra adjustments, it will most likely be extra “up” that you need, followed by extra “right.” Adjustable scope mounts have to provide extra scope movement in all directions, with up and right being needed most often.

Scope tube integrity
The scope tube is a hollow, rigid tube that must maintain its integrity to keep the lenses in alignment. If the tube were to bend, it could seriously damage or even break the scope. Adjustable scope mounts must either move the scope as a whole without putting any stress on the tube, something that only a 1-piece mount can do; or they must adjust in such a way that when the rear mount moves, the front mount can relieve the stress on the scope tube. Only the B-Square AA adjustable scope mounts were able to do that; and when B-Square sold the company several years ago, the new owner moved the manufacture of the AA adjustable mount to China, where the quality control was soon lost. You cannot buy new AA adjustable scope mounts any more.

Benjamin Marauder old style magazine
When the rear mount is raised above the front mount, if the front mount doesn’t move to compensate, the scope tube will be strained. These B-Square 2-piece AA adjustable mounts have rings that pivot forward to allow the scope tube to remain straight.

Sports Match has 2-piece adjustable mounts on the market; but as far as I can see, they make no provisions for relieving the stress on the scope tube when the rings are adjusted separately for elevation. I guess I need to test them to learn their operational parameters. I don’t see how they can avoid stressing the scope tube when the front and rear mount are at different heights, but I’m willing to hold my opinion until I’ve examined them.

I’ve tested several 1-piece adjustable scope mounts and found all of them to work well in this regard. Most recently, I tested the BKL adjustable mount and found that it moved well in both directions.

What about precision?
To date, no one has made an adjustable scope mount that adjusts with precision for a modern scope. Such mounts do exist for vintage scopes that have no erector tubes because the entire scope has to be moved by the mount. I have shown you this kind of adjustable scope mount a couple times.

adjustable scope rings
This Unertl scope ring adjusts to move the entire scope. It has the same precision as the adjustments on a modern scope.

Slippage is common with adjustable scope mounts
The most common problem is the adjustable scope mount that does not hold its position. That’s why the Chinese-made B-Square adjustable mounts failed. Their screw holes had sloppy threads that tore out under stress, and the mounts couldn’t hold in position. So, whatever adjustable mount you get, it must hold its position once it’s been adjusted, or it won’t work.

And slippage happens soonest on spring guns because of their recoil and vibration. Ironically, spring guns are the very ones that need the adjustable mounts most often. There’s nothing that can be done about this, but you must understand that you don’t want a scope mount that can’t hold its position.

Firearms shooters need adjustable scope mounts more today than ever before. I think that’s because modern guns are being assembled faster and with less precision than they were in the past. The thing is that firearms shooters are not as aware of scope problems as airgunners, so they tend to have more of them; and when they do, the problems are harder for them to resolve. I’ve tried to help people who I knew were having some common problems such as adjusting too high in the scope’s range, but they just looked at me like I was crazy. Surely, no scope manufacturer would field a scope whose adjustments were not 100 percent useable?

That’s all I have for you today. How about telling me your other unresolved scope issues?

Air Venturi Tech Force M12 combo: Part 5

by Tom Gaylord, a.k.a. B.B. Pelletier

Part 1
Part 2
Part 3
Part 4

Air Ventury Tech Force M12 breakbarrel air rifle
The new Tech Force M12 breakbarrel is a new midrange springer from Air Venturi.

Today’s report is an important one, but it may be confusing until you hear the whole story. The last time I reported on this Tech Force M12 combo was back on November 19 of last year. A lot has happened with this rifle since then, and I’ve kept daily readers informed of what’s been going on, but it would have been easy to overlook and even easier to forget. So I’ll summarize.

The M12 I’m testing is a drooper, and I first had to solve that problem. Once I did, I noticed it threw fliers. I cleaned the barrel — but it got no better. I tightened all the screws — again, no change. I cleaned the barrel with JB Non-Embedding Bore Cleaning Compound — and still there was no improvement. Then, I shot the gun just to break it in — again, no change.

All of this work took a lot of time, as I was testing and reporting on other guns. I also set the rifle aside for weeks at a time out of sheer frustration. In late January of this year, I decided to have another go at discovering what the problem was. I had to locate a drooper scope because, by this time, I’d used the scope that was on this rifle for other tests. I reread the early reports and discovered that this rifle had shot very well at 10 meters with JSB Exact RS pellets. So, that was the pellet I tested, but at 25 yards.

Pay attention!
At 25 yards, I got several groups that had a bunch of shots close together and then some fliers. But one group stood apart as extraordinary. Seven of the 10 shots were in an extremely small group, and 3 others were huge fliers. This was what I had been looking for. When you see something like this, it tells you the rifle wants to shoot, but something is interfering intermittently.

Tech Force M12 breakbarrel air rifle 25-yard target
The group at the top left with the one shot that isn’t quite touching is 7 shots from 25 yards. That’s a 0.439-inch group. The other 3 holes are fliers shot at the same time. This is a clear indication of a problem.

I looked down through the muzzlebrake with a powerful flashlight and saw the real barrel muzzle deep inside. It appeared very rough, plus I could see bright bits of lead clinging to the inside rear edge of the muzzlebrake. I showed this to Edith, and she confirmed what I was seeing.

Apparently, the crown of the muzzle of my rifle was uneven and was causing pellets to wobble just a tiny bit when they left the barrel. A few of them were hitting the inside rear edge of the muzzlebrake, causing them to destabilize in a big way. Those were the random fliers I was seeing.

I communicated this to Pyramyd Air. Gene, the tech manager, took apart an M12 to look at the crown. He said it looked rough to him, as well. He crowned it and sent me the barrel to exchange with the barrel in my rifle.

The barrel Gene sent is .22 caliber, while my rifle is .177, but that makes no difference. One barrel works as well as another, as they’re the same size on the outside. I followed Gene’s instructions and switched barrels in 15 minutes. I didn’t have to disassemble the rifle because of how it’s made.

Once I got the original barrel out of the gun, I could see that the muzzle wasn’t as rough as I’d thought. I had seen grease on the end of the muzzle when I looked down inside, and it looked like rough metal to me. The muzzle is finished rather well, but the actual crown, which is a chamfer cut into the bore, is cut on an angle rather than perpendicular with the bore. It allows compressed air to escape the muzzle on one side of the pellet before the other.

Tech Force M12 breakbarrel air rifle 177 muzzle
The muzzle of the .177-caliber barrel that came in the rifle was crowned lopsided. The chamfer appears narrow at the bottom of the muzzle. That’s not an optical illusion — it really does grow narrow there!

Tech Force M12 breakbarrel air rifle 22 muzzle
It may be hard to see in this photo, but this crown is even all around the bore. This is the .22-caliber barrel sent to me by Pyramyd Air.

Following the assembly of the barrel to the rifle, I remounted the scope and proceeded to start my sight-in. I decided to test the .22 barrel with JSB Exact RS pellets, as well. One shot at 10 feet was all it took…and I was on target. Two more shots at 10 meters and I was sighted-in. Next, I shot a 10-shot group. The rifle behaved very stable and did not appear to throw any wild shots.

The 10-meter group I shot was consistent, if not terribly small. But the lack of fliers, even at 10 meters, gives me hope that the crowning of the barrel has solved the problem.

Tech Force M12 breakbarrel air rifle 10-meter target
Ten shots at 10 meters gave me this group with the recrowned .22-caliber barrel. This gives me hope that the problem has been fixed.

Test is not finished.
By no means is this report finished. I still need to shoot several groups at 25 yards to see what the M12 can really do. I have no idea what the best .22-caliber pellet might be. After rereading the first two parts of this report, I see that I very much liked the way the gun handles. That’s still true. It lacks the two-bladed Mendoza trigger — and that’s a shame, but the trigger it has isn’t that bad. Obviously, I’m able to use it.

I now have both a .22-caliber barrel and a .177-caliber barrel that fit on the same powerplant. If I can hold onto them both, I may be able to get a little more milage from this gun. First, I could do a redneck crowning job on the .177 barrel and report how well that works.

Next, I could test the .22 barrel for velocity and then swap barrels and retest the .177 barrel to get a comparison between calibers from the same gun. I’ve always been able to do that with my Whiscombe, of course, but this is more of a real-world air rifle to which many can relate.

I know there are several shooters who wanted the M12 to be a great buy, and my early tests didn’t bear that out. If they’ve continued to follow this blog, they’ll get the chance to see how the story ends!

Air Venturi Tech Force M12 combo: Part 4

by Tom Gaylord, a.k.a. B.B. Pelletier

Part 1
Part 2
Part 3

Air Ventury Tech Force M12 breakbarrel air rifle
The new Tech Force M12 breakbarrel is a new midrange springer from Air Venturi.

I usually have a handle on the gun by the time Part 4 rolls around. But, today, I’m still stymied by the Tech Force M12 breakbarrel. I’ll tell you all I’ve done to make sure this rifle is on the beam; but when I tell you my results, I think you’ll see I’m not there yet.

Big droop!
I discovered in Part 3 that the M12 I’m testing is a big drooper. That means it shoots very low relative to where the scope is looking. For today’s test, I installed a B-Square adjustable scope mount that has a huge downward angle to bring the point of impact back up to the aim point. It worked well enough for the test, so I proceeded to shoot several different types of pellets — trying all kinds of hand holds and even resting the rifle directly on the sandbag.

Here’s a list of the pellets I tried: (10-shot groups with each)
Beeman Kodiaks
Beeman Kodiak Hollowpoints
RWS Superdomes
Crosman Premier 10.5-grain
Crosman Premier 7.9-grain
JSB Exact RS
JSB Exact 8.4-grain
JSB Exact 10.3-grain
RWS Hobby
Beeman Trophy (an obsolete domed pellet)
Eley Wasp (an obsolete domed pellet)

Best pellet
With most of these pellets, the rifle teased me with several pellets in the same hole — but a 10-shot group that was 1.5 inches and larger. A couple were all over the place and simply would not group at all. The Hobbys were probably the worst.

Only one pellet put 10 shots into 1.038 inches at 25 yards. Those were RWS Superdomes, and the hold was with my off hand back by the triggerguard, leaving the rifle very muzzle-heavy. The rifle was somewhat twitchy but not overly so.

Air Venturi Tech Force M12 breakbarrel air rifle group of RWS Superdomes
This is the best group I shot in the test from 25 yards. It’s 10 RWS Superdomes, and the rifle is rested with my off hand touching the triggerguard.

Encouraging
The encouraging thing about this group is that I didn’t have to use a lot of technique to shoot it. I know it isn’t as tight as others I’ve shot at the same distance, and you’ll compare it to them, but I compared it to the other groups I was getting with this rifle. In that comparison, this was the best one and it was also relatively easy to shoot.

What all did I do?
For the record, here’s a list of all the things I tried to get the M12 to shoot.

Cleaned the barrel
Tightened the stock screws (they were tight)
Installed a drooper mount with a lot of down angle
Tightened the scope mount screws (and they were loose on the B-Square adjustable mount!)

Tried resting the forearm of the rifle:
On my open palm in front of the triggerguard
On my open palm under the cocking slot
Directly on the sandbag

Tried shaking the barrel to test the breech lockup (it is tight)
Tried extra relaxation with the artillery hold — which worked for a few shots, but never more than four
Tried attaching an extra weight to the barrel during each shot (with a large magnet)

So, where are we in this test?
I still think the M12 can shoot because there’s evidence of it wanting to stack its pellets. It might be that this is a rifle that needs more than a thousand shots to break in. I’ve owned a few of those. The Beeman C1 from Webley that I used to own was such a rifle. At first it was a royal beast; but as the shot count passed 2,000, the rifle began smoothing out and transforming into something very delightful to shoot. By 4,000 shots, the trigger was very nice and the gun had no vibration to speak of. It was this very rifle that caused me to give the artillery hold its name, and I wrote the first article I ever wrote about airguns for Dr. Beeman. He didn’t respond to my submission, so I saved it and eventually wrote it up in The Airgun Letter.

I wonder if this M12 needs that kind of break-in? That’s something I haven’t done in a good many years because it takes so much of my time. But it might be interesting to see if the rifle responds to a long-term break-in. I think I’ve certainly shoot 250-300 shots at this point, because I also tested the gun at 10 meters and one time at 25 yards (it wasn’t reported). Maybe I’ll rack up some more shots to see how that affects a longer-term break-in.

NEW: Dan Wesson pellet revolvers!
Dan Wesson pellet revolvers

You wanted Dan Wesson revolvers that could shoot pellets, so we ordered them. Six-shot pellet shooters that so closely copy the firearm, you'll be stunned by the realism. An excellent way to hone trigger control and maintain accuracy with your firearm -- without range fees, expensive ammo or leaving your house. Pre-order yours now. Get it. Shoot it. Love it!

Ka-BOOM!
Airburst MegaBoom reactive targets

Airburst MegaBoom bases transform ordinary plastic soda & water bottles into booming targets that deliver up to 150 decibels when punctured. Get the base and charge your own plastic bottles or get the MegaBoom bottles filled with BoomDust that mists like smoke when the bottle is punctured. Low-pressure air pump and blast guard accessories also available. A real blast!

Archives