by B.B. Pelletier

Announcement: Dammion Howard is this week’s winner of Pyramyd Air’s Christmas Big Shot on their facebook page. He’ll receive a $50 Pyramyd Air gift card plus another $50 in goodies!

Dammion Howard (left) shows off some new airguns he found under the tree this year!

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7
Part 8
Part 9
Part 10
Happy New Year from Tom & Edith!
One nice thing about watching a TV program is that it only takes an hour or less to view. You have no sense of the man-weeks of work that go into a short production on screen. Sometimes, the same thing happens in the world of airgun blogs.

I won’t say I’ve been dreading today’s report; but from past experience adjusting the HOTS on the Whiscombe rifle, I knew it might take longer than anyone could imagine to get a good result. It’s easy to say, “Adjust the HOTS for optimum performance with a certain pellet.” Actually doing it is where you discover if it’ll be easy or hard. The report I have for you today was very hard.

I allotted several hours to the actual testing and adjusting that would have to be done. And with my past experience with the Whiscombe, I knew shortcuts the average shooter wouldn’t think of. Let me lay the groundwork so you understand what’s happening in this process

The HOTS
The Whiscombe harmonic optimized tuning system (HOTS) consists of a weight that can be adjusted in or out along the axis of the bore. A jacket around the barrel is threaded to receive this weight. The threads on the weight are very fine, and one turn of the weight moves it a millimeter in either direction. One complete turn of the weight constitutes 1mm movement of the weight.

Besides the weight, there are two other metal parts. One is a short collar that locks the weight in position after it’s been adjusted, and the other is a much longer cover that encloses the entire HOTS from sight. This longer cap doesn’t need to be removed from the weight to make adjustments, just provide access room for the special wrench that moves the weight.


Here you see the HOTS mechanism. The threaded weight is turned in or out of the barrel jacket by the wrench. Once the weight is where you want it, lock it down with the knurled collar on the barrel jacket. Then, install the long cap, and the job is done.

Where to start?
The problem is always the same: Where do you start adjusting the weight? The simplest way is to start right where you are — with the HOTS in the last position it was set. Shoot a group at that setting and go from there. I had that data, of course, from the earlier part of this test, so that’s where I began. Because the last transfer port is still installed in the rifle, the Beeman Devastator pellet still develops about 772 f.p.s.

When I shot a group at this velocity in the earlier test, 10 shots went into a group measuring 1.073 inches between centers. I was looking for a group somewhere near that size this time, too. It might be a little smaller or larger; but if it was a quarter-inch group, there was a problem with the results of the last test. The same care was taken with each shot; to do any less would have skewed the results or made them unreliable at the very least.

The first group shot in this test, shot with the same HOTS setting, measured 0.953 inches between centers. That’s 0.12 inches smaller than the group from the last test. I would call that in the same ballpark and therefore a confirmation that the last test was sound.


Ten Beeman Devastators at 25 yards went into this 0.953-inch group with the original HOTS setting. It’s close to what the gun did in the last test on the same setting.

Adjusting the HOTS
Whiscombe says that there will be several sweet spots throughout a one-inch movement of the weight, which is approximately 25 full turns. He also says that one spot will be better than the others, and that’s the one to look for. He just doesn’t tell you how to find it, other than by adjusting the weight one turn at a time. But my experience told me that the sweet spot was probably not where the weight was at this time, so I turned it in (toward the receiver of the gun) four full turns and shot a second group. This is where my experience with the Whiscombe was supposed to pay off.

I wasn’t going to waste my time shooting 10 shots if the first 5 were spread out. Why bother? I wanted a tight group, and if inside 3-4 shots — or even 2, on one occasion — there was already a large separation, it was no use going further. I turned the weight in 4 full turns and shot another group. This group teased me with the first 5 shots in less than a quarter-inch, but the final 5 expanded that to 0.977 inches. Can’t be certain because of measurement errors, but no improvement at all.


At 0.977 inches, this group is slightly larger than the original setting. Obviously, the HOTS isn’t adjusted at this spot.

Next, I tried the weight 5 turns in from the start point. The group was worse. I backed out to 3 turns in and got about the same size group as with 4 turns in.

At this point, I experimented with some subtle adjustments on a half and then a quarter turn. At 3.5 turns in, I got a group that was slightly smaller than the one at 4 turns, but it had one called flyer. I tried another quarter turn in and got 4 shots in a group measuring 0.998 inches between centers. Obviously, I wasn’t going the right way.


No sense finishing this group. Four shots are already grouping 0.998 inches.

Okay, this wasn’t working. I adjusted the weight out in the other direction 9 full turns past the initial setting and shot another group of 10. This time there was some success, as the group measured 0.794 inches between centers. I wanted to call that the end of the test; but looking at the group, I knew it wasn’t enough of a difference to impress anyone. Even though it does show improvement over the baseline group, I would like to show a larger change since one of the Devastator groups in the earlier tests measured 0.616 inches. This group was too much larger than that. The gun should be able to do better if harmonics and not velocity was the main driving force behind accuracy.


This group is better than the baseline group, but it’s not as good as some groups that were fired in the big test. It measures 0.794 inches between centers.

By this time, I’d fired 49 shots in about 90 minutes. The test work had lasted much longer than expected, and I had to quit for the day.

A happy accident
The next morning, I was back at the bench and trying to complete the work. I figured I would adjust the weight out from the initial setting by a certain amount but as I tried to do that a happy accident happened. The front cover got stuck together with the weight; and by the time I noticed it, I’d already adjusted it 15-20 turns. Except, I had no way of knowing how many turns it was. I had to start all over, and this time from a random place that bore no known relation to the initial start point. Not that it mattered, except I didn’t want to waste all of the work from the day before.

I adjusted the weight at a point that looked to be well away from the initial setting. Then, I shot a group as a baseline. Or I should say I began to shoot a group. After 3 shots, I had a spread of 1.153 inches between centers — the largest spread of the entire test to this point. No sense finishing that one!

Past experience has shown that the sweet spots are often a couple turns in either direction. I guessed and turned the weight back in three turns from the starting point. And that was when it happened. The clouds rolled back, the angles sang and the rifle grouped like I knew it could. Ten shots went into 0.523 inches. That’s not only the best group of this little experiment with the HOTS, it also beats every group fired with the rifle during the main test conducted earlier.


This group of 10 was shot on the second day, with 3 turns in from the start point. It measures 0.523 inches and proves that the Beeman Devastator can shoot accurately at 772 f.p.s.

The results
With this kind of data in hand, I can say with some confidence that harmonics and not velocity is the main driver in how accurate a spring gun can be. I say this because the worst group shot during the velocity test was adjusted harmonically into the best group of the test with this pellet. There’s no chance in this group — it’s clearly much better than it was in the beginning.

Could the rifle shoot this pellet even better? Maybe. But it isn’t necessary to prove the point we were trying to prove.

Next, I want to adjust the rifle for Beeman Kodiaks at a higher velocity and test pellets straight from the tin against pellets that are sorted by weight. Today’s report should give everyone the confidence that, if a difference in accuracy is noted, it will be because of the pellets and not the gun.