The stuff we do!

by B.B. Pelletier

Announcement: Shao Lin is this week’s winner of Pyramyd Air’s Big Shot of the Week on their facebook page. He’ll receive a $50 Pyramyd Air gift card.

Shao Lin wins this week’s Big Shot of the Week.

The more I read the old books about shooting and guns written by men who were born in the 19th century, the more I realize how much alike we all are — and I don’t just mean shooters, now. I mean people, in general!

Let’s begin with nicknames or handles. We have some clever ones here on this blog. But are you aware that back in the late 1800s, shooters who posted letters in their favorite shooting publications — which at that time were mostly newspapers — did the same thing?

Names like Medicus and Iron Ramrod shout out from the late 19th century with their concerns that the younger shooters who are getting used to cartridge-loading breechloaders simply do not know the rudiments of shooting like the “real shooters” who grew up with black powder! The new crop of shooters (I’m speaking of late 19th-century shooters, now) have forgotten how to measure a group with string and they want to measure the distance to their targets in yards instead of rods like real shooters do.

Then, there are the experiments they performed. Dr. Mann was the great one for this, and he kept a very compliant Harry Pope busy fashioning the testbeds for his various forays into the arcane world of ballistics. Things like the cylindrical rifle action that allowed Dr. Mann to rotate the action by degrees in a complete revolution, all while the gun was safely snugged down in his 3,000-lb. “Shooting Gibralter” vise. Or the barrel he convinced Pope to rifle after drilling and tapping eight holes through the side of the barrel near the muzzle so Mann could test the effects of releasing gas to the side so it didn’t exit the muzzle with the bullet. Pope had to lay out that rifling job so those pre-drilled and threaded holes ended up in the grooves of his gain-twist rifling and did not cut through any of the eight lands!

I got a call the other day from Dennis Quackenbush, who follows my column in Shotgun News. He became interested in my comments on the rifling twist rate of airgun barrels as it relates to stabilizing those solid pellets that I call bullets. They don’t shoot very well in most airgun barrels because the twist rate of one turn in 16 inches of barrel isn’t fast enough to stabilize them once they exit the muzzle. So, he offered to make me two test barrels — one rifled 1 in 22″ and the other rifled 1 in 13″ — to test what effects the twist rate has on pellet stabilization. I’m going to accept his offer, and we’ll have yet another look at one of the big drivers of accuracy. I’ll also test velocity using the exact same power settings, so we will have a good look at how twist rates affect velocity.

Years ago, Dennis allowed me to cut off one of his smallbore CO2 rifle barrels an inch at a time so I could chronograph the pellets coming out of many different barrel lengths. I reported those results in The Airgun Letter after completing the test, which is why I now have some sense of how long a CO2 barrel needs to be to get maximum velocity.

Then, there’s the famous Cardew experiment from their book, The Airgun From Trigger to Target, where the authors fired a spring-piston rifle in an inert gas environment that didn’t support combustion — all so they could test the power level of a spring-piston rifle that was denied the possibility of dieseling. The fact that they did the experiment was good enough. We learned that all air rifles that shoot above a certain velocity diesel with every shot. But what was really cool was how they did it — by shooting inside plastic bags!

When I worked at AirForce, we had a customer who purchased a .22-caliber Condor, then proceeded to adapt the rifle’s reservoir to a large helium tank. He could then sit at a bench and fire the rifle on pure helium. He claimed to get over 1,500 f.p.s. from his modified rifle. It was useless for anything else, but he didn’t want to do anything other than see how fast it could shoot.

Even my semi-sane buddy Mac bought a 26-inch Weihrauch barrel in .177 just so he could adapt it to his son’s Condor. He was looking for a flat-shooting air rifle and I guess he got it, because his son is now supposed to be able to keep all his shots on the round end of a soda can at 80 yards.

Let us never forget the great pogostick repeating airgun! That one is now in Vince’s protective care, awaiting his verdict on whether or not it can be made operable.

Left-eye dominance
Here’s a problem many shooters have. Their dominant eye is on the other side of their body from the side that dominates the motor skills. The most common is a right-handed person whose has a dominant or master left eye. This can be overcome in a number of ways — including tinkering! Back when Edith was shooting BRV, she discovered that she is left-eye dominant; but Gary Barnes, who made the rifle she competed with, made her an outrigger scope mount that put the scope in line with her left eye. The mount had to be boresighted for just one range; because like the pellet drop, the gun also shot to the left from the shooter’s perspective. No problem in BRV, though, because it was all shot at one distance.


Edith’s outrigger scope mount helped her sight with her left eye while shooting right-handed.

But Edith is far from the first shooter to have this problem. Take a look at the lengths a shotgun maker will go to satisfy his client.


A friend owns this shotgun with a crossover stock. It was made to aid a right-handed shooter who is left-eye dominant.

A couple months ago, I bought an unusual Schmidt-Rubin Model 1911 rifle at a gun show. This one has been carefully transformed into a fine target rifle. I could spend a whole blog on just this one rifle, but here are some highlights. The military stock has been completely reshaped into a target style with a deeply curved pistol grip. The bolt handle that used to be two cones of red plastic (yes, I said plastic — though they may be almost any synthetic, since this is a 1911 rifle) now has a steel ball for a pull. It looks odd but it works. And the front sight is a thing of beauty. A man has taken the time to hand-make a target globe front sight with replaceable inserts. I got only the one insert that’s in the sight now, which is two brass wires arranged like scope reticles. They look crude up close; but last week at the range I put four cast lead bullets in one inch at 100 yards, and that was the first time I ever loaded for this rifle.


Someone converted this Swiss Schmidt-Rubin model 1911 rifle into a target rifle. The stock is fashioned from the original military stock.


He replaced the conventional red synthetic bolt knobs with a steel ball, which he welded to the bolt handle.


The amount of time and care that someone put into making this target sight is amazing! This is where enthusiasts will take the sport when they have the time, motivation and skills.

I remember attending an airgun breakfast sponsored by the NRA at the Annual Meetings in Kansas City. Dennis Quackenbush and I sat on either side of the man who was the CEO of Crosman Corporation at that time. We got onto the subject of all the people who modify Crosman airguns, and the executive said he was surprised that shooters would spend time and money on a $39 airgun. Dennis told him, “Oh, but they do. You sell them the gun for $39 and I sell them $125 worth of accessories. Your guns are keeping me in business!”

From the look on the man’s face, I don’t think he believed us. And from his perspective, maybe he was right. He might sell 50,000 SSP air pistols in a year and Dennis might sell the parts to modify 500 of them in various ways. So, each man had an entirely different perspective on the situation.

As a writer, though, my eye is always on what people are doing, or what they say they want to do. I can’t be interested in a buyer who responds to a point of sale promotion at a discount store, because he may lose interest tomorrow. It’s when he finds his way to this blog through the tanglefoot of the internet and asks that first question that tells me we’re about to gain another potential member in out growing ranks. It’s at that point that my mantra becomes one of flypaper.

Almost anything can be interesting if it’s presented in the right way. And with airguns, one of the right ways is to wow the audience. Make them say to themselves, “I didn’t know that!” If you can do that, we’ll gain a lot of new shooters who are interested in learning.

Another way to attract new people is to help them through the minefield of hype and hyperbolae. The marketing people are doing all they can to attract people to the hobby, but it’s us veterans who will make things inviting enough that they’ll want to stay. And that is what I want, more than anything.


Beeman P1/HW 45 air pistol: Part 2

by B.B. Pelletier

Part 1


A large and impressive spring-piston air pistol, the Beeman P1 sits in the top tier of air pistols for power and quality.

In Part 1, we received so many comments and questions about the Beeman P1 that it’s now certain that this report will have more than three parts. I’ve been asked to show you how to hold the handgun for best results, and while I’d hoped to get to that today, something has come up in today’s testing that caused me to postpone that until the next report. I want to spend some time explaining a spring-gun phenomenon that I’ve read about but, until this test, have never seen.

However, first things first. I promised the links to the older reviews of the P1/HW 45. The first link goes to a report I wrote back in 2007, which was supposed to be an update on this pistol: Beeman P1/HW 45 air pistol.

That report was supposed to update the report I did back in 2005: Beeman P1/HW 45: A shoulder stock, red dot sight and more!

After reading both of the older reports, I see that a lot was left out. I hadn’t started using the current report format yet, so I wrote things pretty much as they came to me and as the readers asked for them. Today, I’ll try to hit all the important points in every report. The later report does explain how to fit the piston seal to the compression chamber by dry-firing the gun, though. That’s a factory procedure, so don’t worry about it.

Back to today’s report
Today, I’m going to report on the velocity I get from my P1, which is now 15 years old. As I mentioned in the first report of this series, I lubricated my gun when it was new, and that was the last time I was inside the powerplant. I also made a trigger modification, but that has no bearing on the powerplant.

What you see today is the performance of a Beeman P1 after 15 years of relatively light use. I estimate fewer than 5,000 shots have been fired in all that time. Many airgunners have speculated that since the wire used in the pistol’s mainspring is thin, it will degrade over time, causing the pistol to lose power. Let’s see how much truth there is to that. The spring wire has to be thin to fit inside the small compression/spring cylinder that’s hidden inside the top of the pistol. There’s only so much room for things inside the small package that I showed you in Part 1.

Cocking effort
I measured the cocking effort by placing the topstrap on a bathroom scale and pressing down to open the pistol and cock the spring. It took exactly 12 lbs. of force for this, though I would have estimated the number at 20 lbs. if the scale wasn’t available. I guess the closeness of the two levers (the topstrap and the rest of the gun) when cocking makes the effort seem greater.


This is how you test the cocking effort of the P1. Just keep pulling apart the action and bearing down on the scale as you do.

It seems to take no more effort to continue to cock the gun to the second sear stop, but you do have to apply the same force over a longer arc, so arguably it really does take more effort. However, practically speaking, once the lever is moving, it’s just as easy to go all the way as to stop halfway, which is why I never use the low-power setting.

Velocity
The first pellet I tested was the venerable Crosman Premier 7.9-grain domed pellet in the brown cardboard box. I noticed that some of our newer readers don’t understand that when I link to a certain pellet in the Pyramyd Air website, that’s the pellet I use. I don’t normally use any Premiers unless they come in the brown cardboard box. I’m telling you this because a couple of readers were speculating about whether to use the Premiers in the tin can or in the box. As a veteran who has used Premiers since they first hit the market, I find it difficult to think of anything that’s not in a box as a Premier. It’s an old habit that has a lot less significance now that die-lots mean so much less than they used to.

Premiers on low power
On low power, Crosman Premier lites averaged 416 f.p.s., with a spread from 407 to 424 f.p.s. That works out to a muzzle energy of 3.04 foot-pounds.

Premiers on high power
On high power, Premier lites went 98 f.p.s. faster, on average. At 514 f.p.s., they generated 4.64 foot-pounds. The spread on high power went from 508 f.p.s. to 517. So, on high power, the total spread was 9 f.p.s., while on low power it was 17 f.p.s.

RWS Hobbys on low power
The next pellet I tried was the RWS Hobby, which is one of the lightest pure lead pellets around. On low power, they averaged 445 f.p.s., for a muzzle energy of 3.08 foot-pounds. The spread went from 439 to 449 f.p.s., so only 10 f.p.s.

RWS Hobbys on high power
On high power, Hobbys averaged 553 f.p.s. That’s a muzzle energy of 4.75 foot-pounds. The spread was from 545 to 557 f.p.s., so a total of 12 f.p.s.

These pellets are extremely uniform in this P1, as evidenced by their tight velocity spread at both power levels. In Part 1 and also in one of the older reports, I told you that this pistol averaged 559 f.p.s. with Hobbys. So, the difference of just 6 f.p.s., between the old and current velocity readings is almost too small to have any impact. The gun is virtually shooting as it did four years ago and even as it did 15 years ago. That should answer the question of whether or not the mainspring breaks down over time. Clearly, it doesn’t.

And now for the special event
I wasn’t expecting what I am about to show you, but I’ve never shot super-lightweight pellets in my P1 before. I knew they would be faster. They would have to be, because they’re so much lighter. But they also did something that I didn’t expect.

Crosman High Velocity Super Sonic pellets on low power
When I began shooting Crosman High Velocity Super Sonic Pellets they registered 530, 524 and 541 f.p.s. on the Shooting Chrony Alpha model chronograph I was using. Imagine my surprise when shot four registered 597 f.p.s. Was it just a fluke? No, it wasn’t, because the next four shots after that all registered between 580 and 598 f.p.s.

I wondered if I had somehow “awakened” the gun with these lightweight pellets. But just as I was thinking that, shot nine registered 533 f.p.s, followed by shot ten at 532 f.p.s. The velocity had dropped back to exactly where it had been before the sharp increase. What was happening?

Cardew was right!
I thought for a bit and then remembered that one of the Cardews who wrote the book The Airgun, From Trigger to Target had written that all spring guns exist at one of four possible phases of function. They’re either a blowpipe, a popgun, a combustion gun or a detonation gun. Most of the time, the guns we deal with in this blog are in the combustion phase, in that they diesel with each and every shot. By diesel I mean that they burn some of the lubricant that makes its way into the compression chamber by igniting it through the heat of compression.

Most of the time, we deal with only a single phase in one gun. What I believe has happened in this test is that the P1 converted from being a popgun to a combustion gun for five shots in the shot string, then reverted back to being a popgun for the last two shots. When it was launching pellets at 530 f.p.s., it was doing so by the pressure of compressed air, alone. When it began to push them out at above 580 f.p.s., it was burning some of the fuel (oil droplets) that were in the compression chamber. Bear in mind that this gun was tuned with Beeman M-2-M moly (now sold as Air Venturi Moly Metal-to-Metal Paste), alone, and that was done 15 years ago. Even that small amount of “fuel” is apparently enough to raise the muzzle velocity significantly, as can be seen in this one test.

The “average” velocity for this test was 562 f.p.s., but no one pellet in the shots string went close to that speed. What we actually have here is a bimodal distribution in which the test samples are not all coming from the same source. Some are when the gun is functioning as a popgun and others when it’s functioning as a combustion gun. There are actually two separate distributions of velocities for this pellet when fired on low power, and the only explanation I can think of is the one I’ve given. At the “average” velocity, the muzzle energy is 2.81 foot-pounds.

As I said at the beginning of this report, I felt this was such an important event as to warrant some extra explanation. Let’s look at what happened when I shot the same pellet on high power.

Crosman High Velocity Super Sonic pellets on high power
The average velocity on high power was 677 f.p.s., but, again, no pellet within the shot string went close to that speed. I got another bimodal distribution, with the slower pellets down in the 653-666 f.p.s. region, while the faster pellets were all over 700 f.p.s. (up to the maximum of 704 f.p.s.). I didn’t expect that at all. I thought that at high power the pellets would come out at one consistent velocity, but that’s not what happened. By the way, at the average velocity, the muzzle energy was 4.07 foot-pounds.

Well, I never expected a physics lesson from testing this pistol. Still, it’s nice to know the old gal still has what it takes to get the job done. And, the cocking effort is so much less than I would have imagined!

Next time, I’ll show you how to hold the pistol for the best accuracy, plus I may have another tidbit for you.