by B.B. Pelletier

Part 1
Part 2
Part 3
Part 4


El Gamo 68 is a futuristic breakbarrel from the past.

I’m sure many of you imagine that I’m immersed in airguns all the time, which is true. That my office is filled with all sorts of models (it is) and that my workshop bench is strewn with parts of projects in process. There’s just one problem with that view. I don’t have a workshop. When I really need a lot of room, such as for today’s report, I usually move to the kitchen, where I do my work on that time-honored bench — the kitchen table!

The other thing most readers don’t appreciate is how whipsawed I am with time. I can’t afford to spend a week or even two days on a project anymore. Back in the days of The Airgun Letter, I had one month to crank out the stories that are now written in about four days! If I spend more than three hours on a project before starting to write about it, I’m working on a 12-hour day because the writing and photography take so much more time than the actual testing. And so it was with some trepidation that I approached today’s report, which is a disassembly, evaluation, cleaning and lubrication of my Gamo 68 breakbarrel air rifle.

I wanted to do this because the 68 shoots very suddenly. It doesn’t vibrate like many spring guns, but the thump when it fires is very heavy — way out of proportion with the power of the gun. The trigger is very heavy, and I wanted to see what might be involved in bringing it down. It’s crisp enough, just too heavy for the release.

Because of the potential time element and the fact that I have no room for another disassembled airgun, I studied the rifle carefully for two months — the way a diamond cutter examines an important stone. And with all that study, I still did not recognize the way the gun is assembled. But one look at a schematic sent by David Enoch showed me what to do.

Only three screws have to be removed to take the action out of the stock. That’s no different than any other breakbarrel, but the location of the third screw is certainly different! It’s at the back of the spring tube.


This photo shows the action out of the stock. One extra screw was removed. The one below the triggerguard does not hold the action in the stock. It’s one of two screws that hold the trigger unit to the stock, and it doesn’t have to be removed to get the action out of the stock.

With the action out of the stock, you have access to disassemble the mechanism and do what I ended up doing to the rifle. The trigger is really a complex bullpup unit that’s entirely separate from the barreled action. By “bullpup,” I mean that the trigger blade does not directly contact the sear. It’s located many inches forward of the true sear and is connected by a long lever inside the trigger unit. If I want to improve the trigger-pull beyond what simple adjustment can do, I need to remove this unit from the stock to get access to the pins and levers.

I decided to leave that task for another day, as working on the powerplant was all I had time to do in this session.


You’re looking down into the aluminum stock that holds the spring tube. The trigger unit runs from almost all the way on top, where the trigger blade is located, to all the way on the bottom, where the true sear releases the piston. It’s a complex bullpup unit that must be removed as a unit for work. You can see the steel channel that holds all the trigger parts.

Because of the way the Gamo action is designed, I could set the trigger aside and go to work on the powerplant. The end cap is held in the spring tube by a single large pin that must be drifted out. The action was installed in a mainspring compressor for this next step.


Here you see the barreled action in the mainspring compressor with the large pin drifted out. The pin is on the table, next to the hammer handle. The spring tube is ready to come apart.

Moment of truth
Taking a spring-piston powerplant apart for the first time is always a surprise. You never know how much compression the mainspring is under, even when relaxed, and how far it will come out of the gun before it’s fully relaxed and the gun can be removed from the mainspring compressor. It was a real surprise this time, for the spring came out several inches before fully relaxing. If I had just drifted the pin and tried to hope I could hold the end cap with my body, I could have broken bones!


Like a python that swallowed a telephone pole, the mainspring just kept coming out of the spring tube until it was this far! As you can see, I didn’t have much more room on my adjustment screw.

Once tension is off the mainspring, the rifle can be removed from the compressor. The end cap, spring guide and mainspring can now be removed. The piston, though, is still held in the rifle by the cocking link. You must disconnect the link from the piston before it will slide out of the gun.

The 68 has an articulated cocking link, and I noticed a spot at the front of the cocking slot that was enlarged for the removal of the cocking link. That told me that I did not need to remove the barrel from the action to disconnect the link from the piston. Just line up the link end with the enlarged hole, and the end pops right out.


The cocking link is two pieces.


The end of the link can be removed from the spring tube through the enlarged hole at the end of the cocking slot. The two-piece cocking linkage helps you do this.

The mainspring and piston both told me this gun had probably never been apart before. The grease looked like factory grease, and there were many years of accumulated dirt and grime on all the parts.

The piston has a leather seal that looks brand new. It was a bit on the dry side. After I assembled the rifle, I lubricated it heavily. I’ll continue to do that many times over the next few months, until I’m satisfied that the leather is oily and supple once more.


Leather piston seal looks good.

The piston itself is a very strange duck. It has to be, because the trigger is autonomous from the powerplant. There’s a window on the side of the piston at the rear where the sear catches it when the gun is cocked.


Here you see the entire piston, which is a machined steel part. The rectangular window at the end of the piston skirt is where the sear catches and holds it when the gun is cocked. Only the piston seal and the machined section at the rear touch the inside of the spring tube, so that’s where the moly lubrication goes.

The inside of the spring tube was as dirty as the piston and mainspring. I put paper towels over the end of a long-bladed screwdriver, dipped the paper in alcohol, and cleaned the inside of the spring tube and compression chamber. This would also be the time to remove any burrs from the cocking slot, but there weren’t any on this one.

After the entire powerplant was cleaned, I examined that long mainspring. After all those years, I thought it had to be canted — and it was, though not as much as I’d imagined. Rolling it on a flat surface revealed a wobble at one end, which translated to a jolt during firing. Hopefully, I had a suitable replacement.

I found several possibilities, but the best one proved to be a replacement spring for a TX200, of all things. It’s a special spring Jim Maccari made some years ago and it has collapsed coils in the center and at one end. As you can see in the picture, it’s a lot shorter than the spring that was in the 68. The wire is thicker, but there are so many fewer coils that I knew it would fit. The fit inside the piston was about the same as the factory spring, and the fit on the spring guide was tighter. So, this is a good replacement.


Factory spring above, replacement below. The new spring will certainly be under less compression when the gun is not cocked!

I coated the new spring with a thin layer of black tar and inserted it back into the piston. The front and rear of the piston were then coated with a heavy layer of moly grease and installed back into the spring tube. The cocking link was inserted back into the enlarged hole, where it contacted the piston for cocking.

The spring guide was coated with moly and slid inside the mainspring as far as it would go. The end cap was placed over the end of the spring guide, and the barreled action was installed in the mainspring compressor, once again. This time, the amount the spring stuck out was drastically reduced.


The spring guide is steel. It was coated with moly and slid back inside the mainspring.


The new mainspring has just begun to compress. It’s a lot shorter than the old one!

The gun went together without a hitch! And that was when I noticed for the first time that the entire job from start to finish had taken me only one hour — including photos! That’s as fast as I could tune a TX200 (assuming I would, which would never happen), and it doesn’t require a mainspring compressor. This wasn’t the time-killer I thought it was going to be.

How does it shoot?
The rifle cocked with 22 lbs. of force before this tune. Now it takes 28 lbs. to cock it, and the final sear lockup takes a final crunch that wasn’t there before.

The gun fires with 70 percent less jolting than before, but its just as quick as it was before the tune. The feel of firing is atypical of a lower-powered breakbarrel, just as it used to be. I can now feel a little vibration in the powerplant that I think was previously masked by the heavy firing jolt.

I still don’t know the gun. It will take a session of velocity testing and shooting for accuracy before I can finish this report. Since I’ve already tested the gun extensively before, I’ll combine both of those things in the next report.